
Results
Hybla vs. Hybla
During our first run on Hybla v. Hybla, we noticed a time frame
of 30s was inadequate to observe convergence.

Thus, we ran subsequent experiments for a duration of 60s and
switched the flows to 2 each.

With an RTT under 25ms, Hybla doesn’t modify the update
function, and thus shares bandwidth relatively equally.

Congestion Control with TCP Hybla
By: Julia Gersey, Audrey Kim, Vasu Ramanujam, Lisa Shen

Methods
We logged into the remote testbed using ssh and emulated
controlled traffic workloads.

By changing the bash script, we could evaluate how Hybla
performs against itself while changing the following parameters:
CCA, Bandwidth, Round Trip Time, Number of Flows, and
Duration. We initialized half the flows to begin at 0 seconds and
half to begin after 10 seconds.

Conclusion
The average ratio of the throughput of flows in the
experiment with a queue size of 2BDP was about 1:4 in the
late-coming flow’s favour, whereas increasing the queue to a
size of 4BDP led to it being about 1:15.
Through experimentation with how the change of
parameters influence the disparity and unfairness of the
Hybla Congestion Control Algorithm, we determined that
Hybla’s fairness depends on the initial estimation of RTT. It
appears that Hybla doesn’t recalculate RTT and therefore,
late-coming flows are more aggressive due to a higher RTT
estimate.

References
[1] Carlo Caini and Rosario Firrincieli. 2004. TCP Hybla: a TCP enhancement for
heterogeneous networks. Int. J. Satell. Commun. Netw. 22, 5 (September 2004), 547–566.
https://doi.org/10.1002/sat.799
[2] Dordal, Peter. “Newer TCP Implementations.” ;Newer TCP Implementations - An
Introduction to Computer Networks, Desktop Edition 2.0.9,
https://intronetworks.cs.luc.edu/current2/html/newtcps.html#tcp-hybla.

CLIENT
ROUTER
emulated
network

SERVER

Configure:

Bandwidth, delay, and
queue size

Configure:

Two batches of flows,
congestion control algorithm,

start time, duration

Capture

tcpdump trace

Hybla 2:2 flow, 50mbps, 10ms RTT, 60 seconds

Results (cont'd)
Through the following run of the experiment, we noticed
that as we increase the RTT past 25ms, the normalization
between Hybla and Hybla reach an unfair distribution. We
hypothesized that the RTT estimate of the late-coming flow
was approximately 3 times larger, making it more aggressive.

To test this hypothesis, we increased the queue size and
expected the ratio to become more disparate. The graph
below shows this radicalization of unfairness.

Hybla 1:1 flow, 100mbps, 10ms RTT, 30 seconds

Problems
With the variety of CCAs proposed and deployed throughout
the years, how do we ensure fairness?

How does Hybla compete with itself for bandwidth with
different parameters? How does this help answer the question
of fairness?

Hybla 2:2 flow, 50mbps, 32ms RTT, 60 seconds, queue = 2BDP

Hybla 2:2 flow, 50 mbpss, 32 ms RTT, 60 seconds , queue = 4BDP

TCP Hybla
Created in 2004, TCP Hybla [1] is a congestion control algorithm
that optimizes for satellites. Typically, when competing against
other CCAs, satellite connections are disadvantaged due to their
long RTT, reducing the number of updates the CCA can make.
TCP Hybla solves this problem by scaling another common
algorithm, TCP Reno, to an arbitrary reference RTT of 25 ms.
After each time interval of length equivalent to the RTT, Hybla
updates by a ratio of (RTT/RTT

0
)2 , where RTT is the current RTT

and RTT
0

is the assumed reference RTT, as opposed to 1 (the
update size of TCP Reno) [2].

Introduction
With millions of people connecting to the internet daily, millions
of devices are vying for their fair (or unfair) share of bandwidth.
Congestion control algorithms (CCA) determine the allocation
of bandwidth and prioritizes what is fair.

However, the parameters of the network affect the way certain
algorithms adapt to sharing the network. These parameters can
include round trip time (RTT) (the amount of time it takes for a
packet of data to go from the sender to the receiver and back),
bandwidth, and number of flows (connections of packets being
sent).

https://doi.org/10.1002/sat.799

